Effective Cell Growth Potential of Mg-Based Bioceramic Scaffolds towards Targeted Dentin Regeneration
نویسندگان
چکیده
New emerging approaches in tissue engineering include incorporation of metal ions involved in various metabolic processes, such as Cu, Zn, Si into bioceramic scaffolds for enhanced cell growth and differentiation of specific cell types. The aim of the present work was to investigate the attachment, morphology, growth and mineralized tissue formation potential of Dental Pulp Stem Cells (DPSCs) seeded into Mg-based glassceramic scaffolds with incorporated Zn and Cu ions. Bioceramic scaffolds containing Si 60%, Ca 30%, Mg 7.5% and either Zn or Cu 2.5%, sintered at different temperatures were synthesized by the foam replica technique and seeded with DPSCs for up to 21 days. Scanning Electron Microscopy with associated Energy Dispersive Spectroscopy (SEM-EDS) was used to evaluate their ability to support the DPSCs’s attachment and proliferation, while the structure of the seeded scaffolds was investigated by X-Ray Diffraction Analysis (XRD). Zn-doped bioceramic scaffolds promoted the attachment and growth of human DPSCs, while identically fabricated scaffolds doped with Cu showed a cytotoxic behaviour, irrespective of the sintering temperature. A mineralized tissue with apatite-like structure was formed on both Cu-doped scaffolds and only on those Zn-doped scaffolds heat-treated at lower temperatures. Sol-gel derived Zn-doped scaffolds sintered at 890oC support DPSC growth and apatite-like tissue formation, which renders them as promising candidates towards dental tissue regeneration.
منابع مشابه
COMMONALITY OF PHENOMENA IN COMPOSITE MATERIALS Polymer-bioceramic composites for tissue engineering scaffolds
Designing tissue engineering scaffolds with the required mechanical properties and favourable microstructure to promote cell attachment, growth and new tissue formation is one of the key challenges facing the tissue engineering field. An important class of scaffolds for bone tissue engineering is based on bioceramics and bioactive glasses, including: hydroxyapatite, bioactive glass (e.g. Biogla...
متن کامل3D scaffold with effective multidrug sequential release against bacteria biofilm.
Bone infection is a feared complication following surgery or trauma that remains as an extremely difficult disease to deal with. So far, the outcome of therapy could be improved with the design of 3D implants, which combine the merits of osseous regeneration and local multidrug therapy so as to avoid bacterial growth, drug resistance and the feared side effects. Herein, hierarchical 3D multidru...
متن کاملLocal Regeneration of Dentin-Pulp Complex Using Controlled Release of FGF-2 and Naturally Derived Sponge-Like Scaffolds
Restorative and endodontic procedures have been recently developed in an attempt to preserve the vitality of dental pulp after exposure to external stimuli, such as caries infection or traumatic injury. When damage to dental pulp is reversible, pulp wound healing can proceed, whereas irreversible damage induces pathological changes in dental pulp, eventually requiring its removal. Nonvital teet...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملA 3D-printed scaffold with MoS2 nanosheets for tumor therapy and tissue regeneration
The treatment of malignant bone tumors is a significant clinical challenge because it requires the simultaneous removal of tumor tissues and regeneration of bone defects, and bifunctional three-dimensional (3D) scaffolds that function in both tumor therapy and tissue regeneration are expected to address this need. In this study, novel bifunctional scaffolds (MS-AKT scaffolds) were successfully ...
متن کامل